ICAMS Special Seminar
Friday, 13 October, 11:00 a.m.
Room IC 02-722

Prof. Dr. Ying Chen
Fracture and Reliability Research Institute
School of Engineering
Tohoku University, Sendai, Japan

First-principles calculation of oxygen self-diffusivity in zirconia

A first-principles calculation of the self-diffusivity of oxygen in tetragonal ZrO$_2$ has been attempted based on the atomistic theory of diffusion using the electronic structures, phonon vibration spectrum combing the transition state theory (TST). A local harmonic approximation (LHA) that captures the most important vibrations adjacent to the migrating atom is proposed in the present work to deal with the dynamic instability of tetragonal ZrO$_2$ which is stable above 1478K, the absolute values of correlation factors, atom jump frequencies along a-axis and c-axis directions for a tetragonal lattice have been evaluated respectively. Together with the calculated vacancy concentration, the oxygen self-diffusion coefficients along a-axis and c-axis as the functions of temperature and oxygen partial pressure are obtained for tetragonal ZrO$_2$, which shows that the calculated values with a partial oxygen pressure of 10-15 atm compares well with the available experimental measurements in ZrO$_2$. 

For more information contact suzana.g.fries@ruhr-uni-bochum.de