ICAMS / Interdisciplinary Centre for Advanced Materials Simulation


Crystal plasticity finite element simulation and experiment investigation of nanoscratching of single crystalline copper

Z. Wang, H. Zhang, Z. Li, G. Li, J. Zhang, H. u. Hassan, Y. Yan, A. Hartmaier, T. Sun.

Wear, Elsevier, 430-431, 100-107, (2019)

Qualitative comparison of CPFEM simulation of Berkovich nanoscratching with experimental results.

Mechanical properties of crystalline materials strongly correlate with deformation behaviour at the grain level. In the present work, we establish a 3D crystal plasticity finite element model of nanoscratching of single crystalline copper using a Berkovich probe, which is capable of addressing the crystallography influence. In particular, nanoindentation experiments and high resolution electron back-scatter diffraction characterization are jointly carried out to precisely calibrate parameters used in the crystal plasticity finite element model. Subsequent finite element simulations of nanoscratching are performed to reveal fundamental deformation behaviour of single crystalline copper in terms of mechanical response and surface pile-up topography, as well as their dependence on crystallographic orientation. Furthermore, nanoscratching experiments with the same parameters used in the finite element simulations are carried out, the results of which are further compared with predication results by the finite element simulations. Simulation data and experimental results jointly demonstrate the strong anisotropic characteristics of single crystalline copper under nanoscratching, due to the crystallographic orientation dependent coupled effects of intrinsic dislocation slip and extrinsic discrete stress distribution by probe geometry.

Keyword(s): nanoscratching; single crystalline copper; crystallographic orientation; crystal plasticity finite element
DOI: 10.1016/j.wear.2019.04.024
Download BibTEX

┬ź back