ICAMS / Interdisciplinary Centre for Advanced Materials Simulation


Surface roughness effects on polymer-substrate adhesion: a molecular dynamics study

Date: 04.11.2013
Time: 02:40 p.m.
Place: Materials Day 2013, Ruhr-Universität Bochum, Bochum, Germany

Dhiraj Mahajan

Cohesively bonded polymer-solid interfaces are generally characterized by substrate surface roughness scale of few nanometers to several micrometers. While polymer conformation is essentially independent in the case of micrometer sized roughness patterns, it may be strongly influenced in the nanometer limit, when the roughness scale becomes comparable to the characteristic dimension of polymer (determined via, e.g. radius of gyration). Roughness is known to strengthen the polymer-solid bonding either by increase in the effective contact area or by mechanical interlocking of polymer between surface undulations. However, little is known regarding the role of relative dimensions of polymer chains with respect to surface undulations in effecting the bonding. To this end, we have performed molecular dynamics (MD) simulations to access this information. Coating systems are obtained by bonding coarse-grained polymer molecules with planar substrate and several rough substrates with periodic surface undulation. To quantify the role of roughness, the undulation features are varied in comparison to the average dimension of polymer chains. The coating systems are subjected to different loading modes while monitoring their stress-strain behavior and the work of separation. We find that polymer confinement, caused by roughness features, leads to mechanical interlocking which plays a significant role in improving polymer bonding in place of increase in the effective contact area. Furthermore, confinement also shows the ability to switch the failure mode from adhesive to cohesive.

« back