Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Grain boundary motion of carbon nanotube reinforced aluminium

C. Schwarze

Grain boundary motion of carbon nanotube reinforced aluminium, (2013)

Download: BibTEX

Phase-field simulations to investigate Zener drag of carbon nanotubes (CNTs) reinforced composites were done. In particular, effects of shape and length/diameter ratio of CNTs were studied. The results show a very sensitive pinning effect of CNT due to their orientation, distance and position within the grain boundary network. The fulfilment of the mechanical equilibrium (Young's law) at the triple junctions connected to the CNTs plays an important role during pinning. Large-scale simulation results suggest a more efficient Zener drag by shorter CNTs for longer CNTs of the same volume fraction and diameter.

back
{"type":"Master Thesis", "name":"c.schwarze20131", "author":"C. Schwarze", "title":"Grain boundary motion of carbon nanotube reinforced aluminium", "journal":"Grain boundary motion of carbon nanotube reinforced aluminium", "volume":"", "OPTnumber":"", "OPTmonth":"1", "year":"2013", "OPTpages":"", "OPTnote":"", "OPTkey":"", "DOI":""}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N