Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Phase-field modeling for 3D grain growth based on a grain boundary energy database

H. Kim, S. Kim, W. Dong, I. Steinbach, B. Lee

Modelling and Simulation in Materials Science and Engineering, 22, 034004, (2014)

DOI: 10.1088/0965-0393/22/3/034004

Download: BibTEX

A 3D phase-field model for grain growth combined with a grain boundary (GB) energy database is proposed. The phase-field model is applied to a grain growth simulation of polycrystalline bcc Fe to investigate the effect of anisotropic GB energy on the microstructural evolution and its kinetics. It is found that the anisotropy in the GB energy results in different microstructures and slower kinetics, especially when the portion of low-angle, low-energy GBs is large. We discuss the applicability of the proposed phase-field simulation technique, based on theGBor interfacial energy database to simulations for microstructural evolution, including abnormal grain growth, phase transformations, etc., in a wider range of polycrystalline materials.

back
{"type":"article", "name":"h.kim20144", "author":"H. Kim and S. Kim and W. Dong and I. Steinbach and B. Lee", "title":"Phasefield modeling for 3D grain growth based on a grain boundary energy database", "journal":"Modelling and Simulation in Materials Science and Engineering", "volume":"22", "OPTnumber":"", "OPTmonth":"4", "year":"2014", "OPTpages":"034004", "OPTnote":"", "OPTkey":"phase-field model; grain growth; anisotropic grain boundary energy; grain boundary energy database;", "DOI":"10.1088/0965-0393/22/3/034004"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N