Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Nanomagnonic devices based on the spin transfer torque

S. Urazhdin, V. E. Demidov, H. Ulrichs, T. Kendziorczyk, T. Kuhn, J. Leuthold, G. Wilde, S. O. Demokritov

Nature Nanotechnology, 9, 509-513, (2014)

DOI: 10.1038/nnano.2014.88

Download: BibTEX

Magnonics is based on signal transmission and processing by spin waves (or their quanta, called magnons) propagating in a magnetic medium. In the same way as nanoplasmonics makes use of metallic nanostructures to confine and guide optical-frequency plasmon-polaritons, nanomagnonics uses nanoscale magnetic waveguides to control the propagation of spin waves. Recent advances in the physics of nanomagnetism, such as the discovery of spin-transfer torque, have created possibilities for nanomagnonics. In particular, it was recently demonstrated that nanocontact spin-torque devices can radiate spin waves, serving as local nanoscale sources of signals for magnonic applications. However, the integration of spin-torque sources with nanoscale magnetic waveguides, which is necessary for the implementation of integrated spin-torque magnonic circuits, has not been achieved to date. Here, we suggest and experimentally demonstrate a new approach to this integration, utilizing dipolar field-induced magnonic nanowaveguides. The waveguides exhibit good spectral matching with spin-torque nano-oscillators and enable efficient directional transmission of spin waves. Our results provide a practical route for the implementation of integrated magnonic circuits utilizing spin transfer.

back
{"type":"article", "name":"s.urazhdin20147", "author":"S. Urazhdin and V. E. Demidov and H. Ulrichs and T. Kendziorczyk and T. Kuhn and J. Leuthold and G. Wilde and S. O. Demokritov", "title":"Nanomagnonic devices based on the spin transfer torque", "journal":"Nature Nanotechnology", "volume":"9", "OPTnumber":"7", "OPTmonth":"7", "year":"2014", "OPTpages":"509-513", "OPTnote":"", "OPTkey":"", "DOI":"10.1038/nnano.2014.88"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N