Publications
A variational formulation of the quasicontinuum method based on energy sampling in clusters
B. Eidel, A. Stukowski.
Journal of the Mechanics and Physics of Solids, 57, 87-108, (2009)
Abstract
This contribution presents a novel quasicontinuum (QC) approach aiming at a seamless
transition from the atomistic to the continuum description of crystalline solids at zero
temperature, which heavily draws on the framework proposed by Knap and Ortiz [2001.
An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49, 1899–1923].
Opposed to Knap and Ortiz, the energy instead of forces is subject to a cluster-based
sampling scheme with adaptive resolution. We show that only the present ansatz
endows the QC theory with a variational structure leading to conservative forces and
symmetric stiffnesses. Equally, we show the strict symmetry in atomic interactions. This
approach allows for the direct application of standard minimization methods and
guarantees the existence of an equilibrium state provided that the total potential
exhibits a minimum. A special focus is on the numerical error in the cluster-based
summation rule for energy sampling. We compare two strategies to improve the
accuracy, which are also particularly useful to account for surface effects. The fully
nonlocal methodology is assessed in nanoindentation into an fcc single crystal.
Compared with lattice statics good agreement is achieved with respect to the
force–displacement curve, the load level and locus of dislocation nucleation and the
dislocation microstructure for a small fraction of the computational costs.
Keyword(s): multiscale modeling, atomistic–continuum bridging, quasicontinuum, nanoindentation, dislocation microstructure
DOI: 10.1016/j.jmps.2008.09.017
Download BibTEX