Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Growth and mechanical properties of a MoC precipitate at a Mo grain boundary: an ab initio density functional study

R. Janisch, C. Elsässer

Physical Review B, 77, 094118-1-9, (2008)

DOI: 10.1103/PhysRevB.77.094118

Download: BibTEX

Atomic-scale stages of the growth of an interfacial precipitate film of tetragonal molybdenum carbide at a Σ5 (310) [001] symmetrical tilt grain boundary in body-centered cubic molybdenum were investigated by means of atomistic supercell calculations on the basis of ab initio density functional theory. The structural development of the precipitate with increasing carbon concentration is analyzed qualitatively and quantitatively. The structurally optimized atomistic model for the fully developed precipitate is compared to experimental high-resolution images from transmission electron microscopy. Characteristic interface energies are calculated to evaluate the influence of the precipitate on the mechanical stability of the material. Finally, an atomic-scale twinning mechanism in the MoC precipitate is proposed.

back
{"type":"article", "name":"r.janisch20081", "author":"R. Janisch and C. Elsässer", "title":"Growth and mechanical properties of a MoC precipitate at a Mo grain boundary: an ab initio density functional study", "journal":"Physical Review B", "volume":"77", "OPTnumber":"094118", "OPTmonth":"1", "year":"2008", "OPTpages":"094118-1-9", "OPTnote":"", "OPTkey":"", "DOI":"10.1103/PhysRevB.77.094118"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N