Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Micromechanical modeling of strength of tempered martensitic steels based on crystal plasticity

R. Hameed

PhD Thesis, Ruhr-Universität Bochum, (2016)

Download: BibTEX

In tempered martensitic steels, the mechanical properties are highly dependent on the orientation and morphology of microstructural entities (laths, blocks and packets). These relationships are investigated by crystal plasticity finite element modeling (CPFEM) of these microstructures. The mechanical properties of simplified representative volume elements (RVE) have been computationally homogenized by using CPFEM and macroscopic response is evaluated through volume averaging. Yield surfaces are calculated for various RVEs with different microstructures. In these steels, the size of microstructural features directly influences the materials strength. Therefore, size effects are also investigated by using the non-local CP model via GND hardening. Furthermore, due to the bcc nature of lath martensitic steels, a non-Schmid constitutive model is utilized. So that the influence of non-Schmid stress contributions can be investigated to model material behavior close to experiments.

back
{"type":"PhD Thesis", "name":"r.hameed20169", "author":"R. Hameed", "title":"Micromechanical modeling of strength of tempered martensitic steels based on crystal plasticity", "journal":"PhD Thesis, Ruhr-Universität Bochum", "volume":"", "OPTnumber":"", "OPTmonth":"9", "year":"2016", "OPTpages":"", "OPTnote":"", "OPTkey":"finite element method; crystal; martensite; microstructure", "DOI":""}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N