Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel

D. Di Stefano, M. Mrovec, C. Elsässer

Acta Materialia, 98, 306-312, (2015)

DOI: 10.1016/j.actamat.2015.07.031

Download: BibTEX

In this work, the interaction of hydrogen with high-angle GBs in nickel has been investigated by means of density functional theory simulations. Two distinct types of GBs have been considered: the Sigma 3 (1 1 1)[(1) over bar 1 0] with a close-packed interface structure and the Sigma 5(2 1 0)[0 0 1] with a less dense interface structure consisting of open structural units. Our calculations reveal that these two GBs have a markedly different interaction behavior with atomic hydrogen. The close-packed Sigma 3 GB neither traps H nor enhances its diffusion, but instead acts as a two-dimensional diffusion barrier. In contrast, the Sigma 5 GB provides numerous trapping sites for H within the open structural units as well as easy migration pathways for H diffusion along the GB plane that can enhance the H diffusivity by about two orders of magnitude compared to bulk Ni. The obtained results are analysed in detail and compared with available experimental and other theoretical data.

back
{"type":"article", "name":"d.distefano201510", "author":"D. Di Stefano and M. Mrovec and C. Elsässer", "title":"Firstprinciples investigation of hydrogen trapping and diffusion at grain boundaries in nickel", "journal":"Acta Materialia", "volume":"98", "OPTnumber":"", "OPTmonth":"10", "year":"2015", "OPTpages":"306-312", "OPTnote":"", "OPTkey":"", "DOI":"10.1016/j.actamat.2015.07.031"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N