Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

The role of silicon, vacancies, and strain in carbon distribution in low temperature bainite

S. Sampath, R. Rementeria, X. Huang, J. D. Poplawsky, C. Garcia-Mateo, F. G. Caballero, R. Janisch

Journal of Alloys and Compounds, 673, 289-294, (2016)

DOI: 10.1016/j.jallcom.2016.02.151

Download: BibTEX

We investigated the phenomenon of carbon supersaturation and carbon clustering in bainitic ferrite with atom probe tomography (APT) and ab-initio density functional theory (DFT) calculations. The experimental results show a homogeneous distribution of silicon in the microstructure, which contains both ferrite and retained austenite. This distribution is mimicked well by the computational approach. In addition, an accumulation of C in certain regions of the bainitic ferrite with C concentrations up to 13 at % is observed. Based on the DFT results, these clusters are explained as strained, tetragonal regions in the ferritic bainite, in which the solution enthalpy of C can reach large, negative values. It seems that Si itself only has a minor influence on this phenomenon.

back
{"type":"article", "name":"s.sampath20162", "author":"S. Sampath and R. Rementeria and X. Huang and J. D. Poplawsky and C. Garcia-Mateo and F. G. Caballero and R. Janisch", "title":"The role of silicon, vacancies, and strain in carbon distribution in low temperature bainite", "journal":"Journal of Alloys and Compounds", "volume":"673", "OPTnumber":"", "OPTmonth":"2", "year":"2016", "OPTpages":"289-294", "OPTnote":"", "OPTkey":"Metals and alloys, Atomic scale structure, Microstructure, Computer simulations, Atom probe tomography", "DOI":"10.1016/j.jallcom.2016.02.151"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N