Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Multiscale simulation of plasticity in bcc metals

D. Weygand, M. Mrovec, T. Hochrainer, P. Gumbsch

Annual Review of Materials Research, 45, 369-390, (2015)

DOI: 10.1146/annurev-matsci-070214-020852

Download: BibTEX

Significant progress in our understanding of plasticity in body-centered cubic (bcc) metals during the last decade has enabled rigorous multiscale modeling based on quantitative physical principles. Significant advances have been made at the atomistic level in the understanding of dislocation core structures and energetics associated with dislocation glide by using high-fidelity models originating from quantum mechanical principles. These simulations revealed important details about the influence of non-Schmid (nonglide) stresses on the mobility of screw dislocations in bcc metals that could be implemented to mesoscopic discrete dislocation simulations with atomistically informed dislocation mobility laws. First applications of dislocation dynamics simulations to studies of plasticity in small-scale bcc single crystals have been performed. Dislocation dynamics simulations inspired the development of continuum models based on advanced 3D dislocation density measures with evolution equations that naturally track dislocation motion. These advances open new opportunities and perspectives for future quantitative and materials-specific multiscale simulation methods to describe plastic deformation in bcc metals and their alloys.

back
{"type":"article", "name":"d.weygand20157", "author":"D. Weygand and M. Mrovec and T. Hochrainer and P. Gumbsch", "title":"Multiscale simulation of plasticity in bcc metals", "journal":"Annual Review of Materials Research", "volume":"45", "OPTnumber":"", "OPTmonth":"7", "year":"2015", "OPTpages":"369-390", "OPTnote":"", "OPTkey":"dislocation; plastic deformation; atomistic modeling; dislocation dynamics; continuum theory; single crystal", "DOI":"10.1146/annurev-matsci-070214-020852"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N