Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Ab initio phonon scattering by dislocations

T. Wang, J. Carrete, A. Roekeghem, N. Mingo, G. Madsen

Physical Review B, 95, 7, (2017)

DOI: 10.1103/PhysRevB.95.245304

Download: BibTEX

Heat management in thermoelectric and power devices as well as in random access memories poses a grand challenge and can make the difference between a working and an abandoned device design. Despite the prevalence of dislocations in all these technologies, the modeling of their thermal resistance is based on 50-year-old analytical approximations, whose simplicity was driven by practical limitations rather than physical insight. We introduce an efficient ab initio approach based on Green's functions computed by two-dimensional reciprocal space integration. By combining elasticity theory and density functional theory, we calculate the scattering strength of a 90^0 misfit edge dislocation in Si. Because of the breakdown of the Born approximation, earlier literature models fail, even qualitatively. We find that a dislocation density larger than 10^9cm^(−2) is necessary to substantially influence thermal conductivity at room temperature and above. We quantify how much of the reduction of thermal conductivity measured in nanograined samples can be explained by realistic dislocation concentrations.

back
{"type":"article", "name":"t.wang20171", "author":"T. Wang and J. Carrete and A. Roekeghem and N. Mingo and G. Madsen", "title":"Ab initio phonon scattering by dislocations", "journal":"Physical Review B", "volume":"95", "OPTnumber":"24", "OPTmonth":"1", "year":"2017", "OPTpages":"7", "OPTnote":"", "OPTkey":"thermal conductivity; dislocation, phonon scattering", "DOI":"10.1103/PhysRevB.95.245304"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N