Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Modelling of intergranular oxidation by the cellular automata approach

K. Jahns, M. Landwehr, J. Wübbelmann, U. Krupp

Oxidation of Metals, 87, 285-295, (2017)

DOI: 10.1007/s11085-017-9732-6

Download: BibTEX

Within this study, the application area of the cellular automata model for the prediction of internal corrosion during high-temperature applications has been extended to intergranular oxidation. Besides a significant mass transport by diffusion, chemical reactions and phase transformations have to be accounted for in a modeling framework for internal corrosion. In addition, grain boundaries play an important role as they are acting as fast diffusing paths where the transport of matter is by orders of magnitudes higher than inside the grain. Here, a numerical model is presented to describe intergranular oxidation attack. The model is applied to the nickel-based superalloy 80a and the low-Cr steel X60. It is shown that experimental and simulated results are in good agreement.

back
{"type":"article", "name":"k.jahns20172", "author":"K. Jahns and M. Landwehr and J. Wübbelmann and U. Krupp", "title":"Modelling of intergranular oxidation by the cellular automata approach", "journal":"Oxidation of Metals", "volume":"87", "OPTnumber":"", "OPTmonth":"2", "year":"2017", "OPTpages":"285-295", "OPTnote":"", "OPTkey":"Corrosion, cellular automaton, grain boundary, chemical reaction, grain boundary diffusion coefficient, intergranular corrosion, metallurgy, materials science, superalloy, nickel", "DOI":"10.1007/s11085-017-9732-6"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N