Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Atomic scale processes of phase transformations in nanocrystalline NiTi shape-memory alloys

W. Ko, S. Maisel, B. Grabowski, J. Jeon, J. Neugebauer

Acta Materialia, 123, 90-101, (2017)

DOI: 10.1016/j.actamat.2016.10.019

Download: BibTEX

Molecular dynamics simulations are performed to investigate temperature- and stress-induced phase transformations in nanocrystalline nickel-titanium shape-memory alloys. Our results provide detailed insights into the origins of the experimentally reported characteristics of phase transformations at the nanoscale, such as the decrease of the transformation temperature with grain size and the disappearance of the plateau in the stress-strain response. The relevant atomic scale processes, such as nucleation, growth, and twinning are analyzed and explained. We suggest that a single, unified mechanism—dominated by the contribution of a local transformation strain—explains the characteristics of both temperature- and stress-induced phase transformations in nanocrystalline nickel-titanium.

back
{"type":"article", "name":"w.ko20171", "author":"W. Ko and S. Maisel and B. Grabowski and J. Jeon and J. Neugebauer", "title":"Atomic scale processes of phase transformations in nanocrystalline NiTi shapememory alloys", "journal":"Acta Materialia", "volume":"123", "OPTnumber":"", "OPTmonth":"1", "year":"2017", "OPTpages":"90-101", "OPTnote":"", "OPTkey":"Shape-memory alloy; nickel-titanium; nanocrystalline material; phase transformation; molecular dynamics simulation", "DOI":"10.1016/j.actamat.2016.10.019"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N