Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Concentration-dependent atomic mobilities in FCC CoCrFeMnNi high-entropy alloys

D. Gaertner, K. Abrahams, J. Kottke, V. A. Esin, I. Steinbach, G. Wilde, S. V. Divinski

Acta Materialia, 166, 357-370, (2019)

DOI: 10.1016/j.actamat.2018.12.033

Download: BibTEX

The diffusion kinetics in a CoCrFeMnNi high entropy alloy is investigated by a combined radiotracer-interdiffusion experiment applied to a pseudo-binary Co15Cr20Fe20Mn20Ni25/ Co25Cr20Fe20Mn20Ni15 couple. As a result, the composition-dependent tracer diffusion coefficients of Co, Cr, Fe and Mn are determined. The elements are characterized by significantly different diffusion rates, with Mn being the fastest element and Co being the slowest one. The elements having originally equiatomic concentration through the diffusion couple are found to reveal up-hill diffusion, especially Cr and Mn. The atomic mobility of Co seems to follow a S-shaped concentration dependence along the diffusion path. The experimentally measured kinetic data are checked against the existing CALPHAD-type databases. In order to ensure a consistent treatment of tracer and chemical diffusion a generalized symmetrized continuum approach for multi-component interdiffusion is proposed. Both, tracer and chemical diffusion concentration profiles are simulated and compared to the measurements. By using the measured tracer diffusion coefficients the chemical profiles can be described, almost perfectly, including up-hill diffusion.

back
{"type":"article", "name":"d.gaertner20193", "author":"D. Gaertner and K. Abrahams and J. Kottke and V. A. Esin and I. Steinbach and G. Wilde and S. V. Divinski", "title":"Concentrationdependent atomic mobilities in FCC CoCrFeMnNi highentropy alloys", "journal":"Acta Materialia", "volume":"166", "OPTnumber":"", "OPTmonth":"3", "year":"2019", "OPTpages":"357-370", "OPTnote":"", "OPTkey":"high-entropy alloys; CoCrFeMnNi; interdiffusion; radiotracer diffusion; pair-wise diffusion model; CALPHAD databases", "DOI":"10.1016/j.actamat.2018.12.033"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N