Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Ab initio study of the electronic and magnetic structure of the TiO2 rutile (110)/Fe interface

A. Grünebohm, P. Entel, H. C. Herper

Physical Review B, 88, 155401, (2013)

DOI: 10.1103/PhysRevB.88.155401

Download: BibTEX

Adsorption of Fe on the rutile (110) surface is investigated by means of ab initio density functional theory calculations. We discuss the deposition of single Fe atoms and increasing Fe coverage, as well as the adsorption of small Fe clusters. It is shown that the different interface structures found in experiment can be understood in terms of the adsorption of the Fe atoms landing first on the rutile surface. Strong interface bonds form if single Fe atoms are deposited. The Fe-Fe bonds in deposited Fe clusters lead to a three-dimensional growth mode. Mainly ionic Fe oxide bonds are formed in both cases and the electronic band gap of the surface is reduced due to interface states. In addition to the structural and electronic properties, we discuss the influence of the interface on the magnetic properties, finding stable Fe moments and induced moments within the interface which lead to a large spin polarization of the Fe atoms at the rutile (110)/Fe interface.

back
{"type":"article", "name":"a.grünebohm201310", "author":"A. Grünebohm and P. Entel and H. C. Herper", "title":"Ab initio study of the electronic and magnetic structure of the TiO$_2$ rutile (110)/Fe interface", "journal":"Physical Review B", "volume":"88", "OPTnumber":"15", "OPTmonth":"10", "year":"2013", "OPTpages":"155401", "OPTnote":"", "OPTkey":"", "DOI":"10.1103/PhysRevB.88.155401"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N