Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Comprehensive analysis of thermodynamic properties of calcium nitrate

D. Sergeev, B. H. Reis, M. Ziegner, I. Roslyakova, M. to Baben, K. Hack, M. Müller

J. Chem. Thermodynamics, 134, 187-194, (2019)

DOI: 10.1016/j.jct.2019.03.007

Download: BibTEX

Thermodynamic properties of calcium nitrate are of interest for development of thermodynamic databases, which can be applicable for thermal energy storage technologies. In the present work thermodynamic properties of Ca(NO3)2, i.e. heat capacity (Cp) and enthalpy of fusion, were determined experimentally. The enthalpy of fusion of Ca(NO3)2 (33.4 ± 1 kJ/mol) was measured in a closed Ptcrucible at the melting temperature 823 K for the first time. The heat capacity of Ca(NO3)2 was measured in the temperature range from 143 K to 723 K by three different differential scanning calorimeters. High temperature X-ray diffraction was used for determination of the temperature dependence of volume from 298 K to 723 K. Combination of heat capacity and volume allowed us to calculate the molar volume at 0 K and to obtain the thermal expansion. The Grüneisen parameter and bulk modulus were deduced from combination of the available ab initio values of Cv and the values of Cp as well as the thermal expansion obtained in this work. This methodology allowed us to perform a comprehensive analysis of experimental values and first principal calculations. A complete thermodynamic dataset for solid and liquid Ca (NO3)2 has been derived.

back
{"type":"article", "name":"d.sergeev20193", "author":"D. Sergeev and B. H. Reis and M. Ziegner and I. Roslyakova and M. to Baben and K. Hack and M. Müller", "title":"Comprehensive analysis of thermodynamic properties of calcium nitrate", "journal":"J. Chem. Thermodynamics", "volume":"134", "OPTnumber":"", "OPTmonth":"3", "year":"2019", "OPTpages":"187-194", "OPTnote":"", "OPTkey":"calcium nitrate; fusion enthalpy; heat capacity; thermal expansion; Grüneisen parameter; bulk modulus", "DOI":"10.1016/j.jct.2019.03.007"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N