Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Neural-network-based path collective variables for enhanced sampling of phase transformations

J. Rogal, E. Schneider, M. Tuckerman

Physical Review Letters, 123, 245701, (2019)

DOI: 10.1103/PhysRevLett.123.245701

Download: BibTEX

The investigation of the microscopic processes underlying structural phase transformations in solids is extremely challenging for both simulation and experiment. Atomistic simulations of solid-solid phase transitions require extensive sampling of the corresponding high-dimensional and often rugged energy landscape. Here, we propose a rigorous construction of a 1D path collective variable that is used in combination with enhanced sampling techniques for efficient exploration of the transformation mechanisms. The path collective variable is defined in a space spanned by global classifiers that are derived from local structural units. A reliable identification of the local structural environments is achieved by employing a neural-network-based classification scheme. The proposed path collective variable is generally applicable and enables the investigation of both transformation mechanisms and kinetics.

back
{"type":"article", "name":"j.rogal201912", "author":"J. Rogal and E. Schneider and M. Tuckerman", "title":"Neuralnetworkbased path collective variables for enhanced sampling of phase transformations", "journal":"Physical Review Letters", "volume":"123", "OPTnumber":"24", "OPTmonth":"12", "year":"2019", "OPTpages":"245701", "OPTnote":"", "OPTkey":"dynamical phase transitions; solid-solid transformations; structural order parameter; structural phase transition; metals; machine learning; molecular dynamics", "DOI":"10.1103/PhysRevLett.123.245701"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N