Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Imaging individual solute atoms at crystalline imperfections in metals

S. Katnagallu, L. T. Stephenson, I. Mouton, C. Freysoldt, A. Subramanyam, J. Jenke, A. Ladines, S. Neumeier, T. Hammerschmidt, R. Drautz, J. Neugebauer, F. Vurpillot, D. Raabe, B. Gault

New Journal of Physics, 21, 123020, (2019)

DOI: 10.1088/1367-2630/ab5cc4

Download: BibTEX

Directly imaging all atoms constituting a material and, maybe more importantly, crystalline defects that dictate materials' properties, remains a formidable challenge. Here, we propose a new approach to chemistry-sensitive field-ion microscopy (FIM) combining FIM with time-of-flight mass-spectrometry (tof-ms). Elemental identification and correlation to FIM images enabled by data mining of combined tof-ms delivers a truly analytical-FIM (A-FIM). Contrast variations due to different chemistries is also interpreted from density-functional theory (DFT). A-FIM has true atomic resolution and we demonstrate how the technique can reveal the presence of individual solute atoms at specific positions in the microstructure. The performance of this new technique is showcased in revealing individual Re atoms at crystalline defects formed in Ni–Re binary alloy during creep deformation. The atomistic details offered by A-FIM allowed us to directly compare our results with simulations, and to tackle a long-standing question of how Re extends lifetime of Ni-based superalloys in service at high-temperature.

back
{"type":"article", "name":"s.katnagallu201912", "author":"S. Katnagallu and L. T. Stephenson and I. Mouton and C. Freysoldt and A. Subramanyam and J. Jenke and A. Ladines and S. Neumeier and T. Hammerschmidt and R. Drautz and J. Neugebauer and F. Vurpillot and D. Raabe and B. Gault", "title":"Imaging individual solute atoms at crystalline imperfections in metals", "journal":"New Journal of Physics", "volume":"21", "OPTnumber":"12", "OPTmonth":"12", "year":"2019", "OPTpages":"123020", "OPTnote":"", "OPTkey":"field-ion microscopy; density-functional theory; bond-order potential; tight-binding", "DOI":"10.1088/1367-2630/ab5cc4"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N