Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Structural stability of Co–V intermetallic phases and thermodynamic description of the Co–V system

P. Wang, T. Hammerschmidt, U. R. Kattner, G. B. Olson

Calphad, 68, 101729, (2020)

DOI: 10.1016/j.calphad.2019.101729

Download: BibTEX

The Co-V system has been reviewed. Density functional theory (DFT) calculations using the generalized gradient approximation (GGA) were used to obtain the energies for the end-members for all three intermediate phases, Co3V, σ and CoV3. Results from DFT calculations considering spin polarization were used to evaluate the CALPHAD (Calculation of phase diagrams) model parameters. The method to evaluate the contribution of the magnetism to the energies of Co-rich compounds that was introduced in our previous work is presented in more detail in the present work. For the description of the σ phase, the magnetic part of the total energy is included in the description of the pure Co end-member compound resulting in a non-linear description of the magnetic contribution over composition. The calculated phase diagram obtained from the present CALPHAD description is in good agreement with the experimental data. The metastable FCC-L12 phase diagram was calculated and compared with experimental data.

back
{"type":"article", "name":"p.wang20203", "author":"P. Wang and T. Hammerschmidt and U. R. Kattner and G. B. Olson", "title":"Structural stability of Co–V intermetallic phases and thermodynamic description of the Co–V system", "journal":"Calphad", "volume":"68", "OPTnumber":"", "OPTmonth":"3", "year":"2020", "OPTpages":"101729", "OPTnote":"", "OPTkey":"DFT; CALPHAD; Co–V; thermodynamics; phase diagram; magnetism; σ phase; superalloy", "DOI":"10.1016/j.calphad.2019.101729"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N