ICAMS / Interdisciplinary Centre for Advanced Materials Simulation


Experimental and theoretical investigation on phase formation and mechanical properties in Cr-Co-Ni alloys processed using a novel thin-film quenching technique

D. Naujoks, M. Schneider, S. Salomon, J. Pfetzing-Micklich, A. P. A. Subramanyam, T. Hammerschmidt, R. Drautz, J. Frenzel, A. Kostka, G. Eggeler, G. Laplanche, A. Ludwig.

ACS Combinatorial Science, 22, 232-247, (2020)

Composition dependence of lattice parameter of Co-Ni solid-solution phase as obtained from bulk samples, thin-film samples and ab-initio calculations.

The Cr-Co-Ni system was studied by combining experimental and computational methods to investigate phase stability and mechanical properties. Thin-film materials libraries were prepared and quenched from high temperatures up to 700°C using a novel quenching technique. It could be shown that a wide A1 solid solution region exists in the Cr-Co-Ni system. To validate the results obtained using thin-film materials libraries, bulk samples of selected compositions were prepared by arc melting, and the experimental data were additionally compared to results from DFT calculations. The computational results are in good agreement with the measured lattice parameters and elastic moduli. The lattice parameters increase with the addition of Co and Cr, with a more pronounced effect for the latter. The addition of ∼20 atom % Cr results in a similar hardening effect to that of the addition of ∼40 atom % Co.

Keyword(s): superalloy; materials library; DFT; nanoindentation; thin-film quenching
Cite as: https://pubs.acs.org/doi/abs/10.1021/acscombsci.9b00170
DOI: 10.1021/acscombsci.9b00170
Download BibTEX

« back