Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Experimental and theoretical investigation on phase formation and mechanical properties in Cr-Co-Ni alloys processed using a novel thin-film quenching technique

D. Naujoks, M. Schneider, S. Salomon, J. Pfetzing-Micklich, A. Subramanyam, T. Hammerschmidt, R. Drautz, J. Frenzel, A. Kostka, G. Eggeler, G. Laplanche, A. Ludwig

ACS Combinatorial Science, 22, 232-247, (2020)

DOI: 10.1021/acscombsci.9b00170

Download: BibTEX

The Cr-Co-Ni system was studied by combining experimental and computational methods to investigate phase stability and mechanical properties. Thin-film materials libraries were prepared and quenched from high temperatures up to 700°C using a novel quenching technique. It could be shown that a wide A1 solid solution region exists in the Cr-Co-Ni system. To validate the results obtained using thin-film materials libraries, bulk samples of selected compositions were prepared by arc melting, and the experimental data were additionally compared to results from DFT calculations. The computational results are in good agreement with the measured lattice parameters and elastic moduli. The lattice parameters increase with the addition of Co and Cr, with a more pronounced effect for the latter. The addition of ∼20 atom % Cr results in a similar hardening effect to that of the addition of ∼40 atom % Co.

back
{"type":"article", "name":"d.naujoks20205", "author":"D. Naujoks and M. Schneider and S. Salomon and J. Pfetzing-Micklich and A. Subramanyam and T. Hammerschmidt and R. Drautz and J. Frenzel and A. Kostka and G. Eggeler and G. Laplanche and A. Ludwig", "title":"Experimental and theoretical investigation on phase formation and mechanical properties in CrCoNi alloys processed using a novel thinfilm quenching technique", "journal":"ACS Combinatorial Science", "volume":"22", "OPTnumber":"5", "OPTmonth":"5", "year":"2020", "OPTpages":"232-247", "OPTnote":"", "OPTkey":"superalloy; materials library; DFT; nanoindentation; thin-film quenching", "DOI":"10.1021/acscombsci.9b00170"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N