Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

A comparison of polycrystalline elastic properties computed by analytic homogenization schemes and FEM

W.A. Counts, M. Friák, C.C. Battaile, D. Raabe, J. Neugebauer

Physica Status Solidi b, 245, 2630 - 2635, (2008)

DOI: 10.1002/pssb.200844226

Download: BibTEX

Body-center-cubic (BCC) magnesium-lithium alloys are a promising light-weight structural material. As a first step in a theoretically guided materials design strategy single crystal elastic coefficients for BCC magnesium-lithium alloys with different compositions were computed using ab initio methods. These single crystal elastic coefficients were then used to predict the corresponding polycrystalline elastic properties using various analytic homogenization techniques (Voigt, Reuss, and a self-consistent approach) as well as the finite element method. As expected, the Voigt and Reuss bounds form the upper and lower bounds on the polycrystalline elastic properties, which the predicted values of the self-consistent approach and finite element approaches fall in between. Additionally, the difference between the polycrystalline elastic properties derived from the self-consistent approach and the finite element method is small illustrating the power and value of the self-consistent approach for non-textured materials.

back
{"type":"article", "name":"w.a.counts200812", "author":"W.A. Counts and M. Friák and C.C. Battaile and D. Raabe and J. Neugebauer", "title":"A comparison of polycrystalline elastic properties computed by analytic homogenization schemes and FEM", "journal":"Physica Status Solidi b", "volume":" 245", "OPTnumber":"12", "OPTmonth":"12", "year":"2008", "OPTpages":"2630 - 2635", "OPTnote":"", "OPTkey":"", "DOI":"10.1002/pssb.200844226"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N