Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Micromechanical modelling of damage behaviour of multiphase steels

V. Uthaisangsuk, U. Prahl, W. Bleck

Computational Materials Science , 43, 27-35, (2008)

DOI: 10.1016/j.commatsci.2007.07.035

Download: BibTEX

Multiphase steels offer very attractive combinations between strength and formability, due to the coexistence of different microstructural components and their interactions. The advantages of multiphase steels can be utilised by adjusting the type, the amount and the spatial distribution of the different phases, which are ferrite, martensite, bainite, and retained austenite. Understanding damage initiation and evolution are important to successfully process the material with only small scatter band of the formability properties. In the investigations two failure modes were simultaneously observed on a micro-scale, cleavage and dimple fractures. The model presented here attempts to describe the influence of the multiphase microstructure on the complex failure mechanism as well as mechanical properties by approaching the problem using representative volume elements (RVE) within the framework of continuum damage mechanics. Simulations for the dimple failure of TRIP steels, using the Gurson–Tvergaard–Needleman (GTN) model with two void nucleation mechanisms, will be presented. The cohesive zone model, based on the traction-separation law, is applied to the cleavage failure modelling.

back
{"type":"article", "name":"v.uthaisangsuk20081", "author":"V. Uthaisangsuk and U. Prahl and W. Bleck", "title":"Micromechanical modelling of damage behaviour of multiphase steels", "journal":"Computational Materials Science ", "volume":"43", "OPTnumber":"", "OPTmonth":"1", "year":"2008", "OPTpages":"27-35", "OPTnote":"", "OPTkey":"Multiphase steel; Finite element modelling; Representative volume elements; Ductile and cleavage fracture; Gurson–Tvergaard–Needleman; Cohesive zone model", "DOI":"10.1016/j.commatsci.2007.07.035"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N