ICAMS / Interdisciplinary Centre for Advanced Materials Simulation
more conferences »


Microstructural evolution during multiaxial deformation of pseudoelastic NiTi studied by first-principles-based micromechanical modeling

R. Heinen, K. Hackl, W. Windl, M. F. Wagner.

Acta Materialia, 57, 3856-3867, (2009)

The deformation behavior of pseudoelastic NiTi shape memory alloys under multiaxial loading conditions is influenced by the evolution of anisotropic martensitic microstructures. We use structural data and elastic constants of B19' martensite calculated from first principles in a micromechanical model to simulate uni- and biaxial experiments with complex strain paths. The microstructural evolution in terms of volume fractions of different martensite variants and the effect of their elastic anisotropy are investigated in detail. The calculated macroscopic stress-strain data are in good agreement with experimental results reported. The simulations elucidate the relative importance of elastic and inelastic deformation mechanisms (twinning, detwinning and reorientation) for the multiaxial mechanical properties of NiTi. They provide a clear picture of the interplay between phase transformation, evolution of martensitic microstructures and macroscopic mechanical behavior. It is demonstrated that apparently small changes of variant volume fractions in twinned microstructures can significantly affect macroscopic stress states. © 2009 Acta Materialia Inc.

Keyword(s): shape memory alloys, martensitic phase transformation, density functional theory, micromechanical modeling, microstructure evolution
Cite as: https://www.scopus.com/inward/record.uri?eid=2-s2.0-67649088089&doi=10.1016%2fj.actamat.2009.04.036&partnerID=40&md5=12e03e3238a8844ac35d3661309c5070
DOI: 10.1016/j.actamat.2009.04.036
Download BibTEX

« back