Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Influence of pore characteristics on anisotropic mechanical behavior of L‐PBF manufactured metal by micromechanical modeling

M. Ramaswamy Guru Prasad, A. Biswas, W. Amin, S. Gao, K. Geenen, J. Lian, A. Röttger, N. Vajragupta, A. Hartmaier

Advanced Engineering Materials, 2000641, (2020)

DOI: 10.1002/adem.202000641

Download: BibTEX

In recent times, Additive Manufacturing (AM) has proven to be an indispensable technique for processing complex three‐dimensional parts because of the versatility and ease of fabrication it offers. However, the generated microstructures show a high degree of complexity due to the complex solidification process of the melt pool. In this study, micromechanical modeling is applied to gain deeper insight into the influence of defects on plasticity and damage of 316L stainless steel specimens produced by laser powder bed fusion (L‐PBF) process. With the statistical data obtained from microstructure characterization, the complex AM microstructures are modeled by a synthetic microstructure generation tool. A damage model in combination with an element deletion technique is implemented into a non‐local crystal plasticity model, to describe anisotropic mechanical behaviour including damage evolution. The element deletion technique is applied to effectively model the growth and coalescence of microstructural pores as described by a damage parameter. Numerical simulations show that the shape of the pores not only affects the yielding and hardening behavior but also influences the porosity evolution itself. This article is protected by copyright. All rights reserved.

back
{"type":"article", "name":"m.ramaswamyguruprasad20208", "author":"M. Ramaswamy Guru Prasad and A. Biswas and W. Amin and S. Gao and K. Geenen and J. Lian and A. Röttger and N. Vajragupta and A. Hartmaier", "title":"Influence of pore characteristics on anisotropic mechanical behavior of L‐PBF manufactured metal by micromechanical modeling", "journal":"Advanced Engineering Materials", "volume":"", "OPTnumber":"", "OPTmonth":"8", "year":"2020", "OPTpages":"2000641", "OPTnote":"", "OPTkey":"additive manufacturing; crystal plasticity; damage; finite element method; porosity evolution", "DOI":"10.1002/adem.202000641"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N