ICAMS / Interdisciplinary Centre for Advanced Materials Simulation


Phase-field simulation of abnormal anisotropic grain growth in polycrystalline ceramic fibers

J. Kundin, R. S. M. Almeida, H. F. M. A. Salama, H. Farhandi, K. Tushtev, K. Rezwan.

Computational Materials Science, 185, 109926, (2020)

Experimental microstructure as used in digital image analysis (top left), simulated microstructure with anisotropic abnormal grains for various heat treatment temperatures and time (top right)and comparison of the experimental and simulated grain size distribution (bottom).

The present work proposes a phase-field approach to realistically simulate abnormal grain growth in polycrystalline ceramic fibers at temperatures above 1000 °C. Under these conditions, grain growth is characterized by the formation of large elongated rectangular grains in a matrix of normal grains. The multi-phase-field model is extended by mechanisms which are responsible for the abnormal anisotropic growth: anisotropic interface energy, anisotropic interface mobility and a recrystallization driving force. Two types of mobility anisotropy are considered: anisotropy due to the misorientation between grains and anisotropy due to the dependency on inclination angles. The experimental data from heat treatments of the ceramic fiber Nextel 610 at 1200–1300 °C with different dwell times are examined by the proposed model. The comparison of the experiment and the simulation results at various times shows that the extended multi-phase-field model is able to simulate the microstructure realistically. In most model cases, abnormal grains have a rectangular shape, similar to the experiment. The best fit of the experimental grain size distribution and the grain shape is achieved by the simulation with the misorientation dependency of the interface mobility. Furthermore, it was shown that a strong decrease on the grain growth rate with time, observed in the experiment, can be reproduced by the simulations taking into account the segregation of impurities on grain boundaries that results in the decreasing grain boundary mobility.

Keyword(s): abnormal grain growth; anisotropic surface energy; anisotropic mobility; phase-field modeling; alumina fibers; ceramics
Cite as: https://www.sciencedirect.com/science/article/pii/S0927025620304171
DOI: https://doi.org/10.1016/j.commatsci.2020.109926
Download BibTEX

« back