Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Modeling and experimental insights of sulfide stress cracking corrosion mechanism

D. Guedes, S. Barrez, F. Thébault, P. Schwittek, A. Hartmaier, J. Creux, X. Feaugaz

NACE International Corrosion 2017 Conference Proceedings, 9328, (2017)

Download: BibTEX

Quenched and tempered martensitic steels for Oil Country Tubular Goods can be subject to Sulfide Stress Cracking (SSC) when exposed to a sour environment. Basically, the failure mechanism of SSC includes an initiation step followed by a propagation step of a crack. Focusing on the latter, it is essential to model the conditions for crack propagation in order to discern the levers that enable to avoid propagation or to stop the crack. With this view, a hydrogen stress driven model was built that describes stress field and hydrogen activity at the direct vicinity of a crack tip. In complement, a second model based on the cohesive zone simulates the kinetic of a crack growth. In parallel, experimental works using hydrogen permeation under stress on flat un-notched and notched tensile specimens brought experimental data that were compared to simulation outputs. The respective influence of diffusible and trapped hydrogen on the cracking mechanism received a specific focus, based on fractographic analyses.

back
{"type":"inproceedings", "name":"d.guedes20171", "author":"D. Guedes and S. Barrez and F. Thébault and P. Schwittek and A. Hartmaier and J. Creux and X. Feaugaz", "title":"Modeling and experimental insights of sulfide stress cracking corrosion mechanism", "journal":"NACE International Corrosion 2017 Conference Proceedings", "volume":"", "OPTnumber":"", "OPTmonth":"1", "year":"2017", "OPTpages":"9328", "OPTnote":"", "OPTkey":"sulfide stress cracking; modeling mechanism; OCTG martensitic pipes; kinetic of crack propagation; trapped and diffusible hydrogen", "DOI":""}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N