Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Laser powder bed fusion of titanium aluminides: an investigation on site-specific microstructure evolution mechanism

X. Zhang, B. Mao, L. Mushongera, J. Kundin, Y. Liao

Materials & Design, 201, 109501, (2021)

DOI: 10.1016/j.matdes.2021.109501

Download: BibTEX

Metal additive manufacturing (AM) improves the design flexibility of titanium aluminides (TiAl-based alloys) as a new class of high-temperature alloys towards widespread applications. In this work, the underlying mecha- nisms responsible for the site-specific thermal history and grain evolution during laser powder bed fusion (LPBF) of TiAl-based alloys are investigated through an integrated computational and experimental effort. In spe- cific, a multiphysics modeling framework integrating a finite element thermal model with a highly efficient phase-field method is developed to simulate the solidification microstructure at different locations within the melt pool during LPBF processing. The investigation of process-microstructure relationship is accomplished using a Ti-45Al (at.%) alloy for a binary approximation, with a focus on site-specific primary dendrite arm spacing (PDAS) and non-equilibrium microsegregation. The microstructural sensitivity to spatial variations, individual processing parameters, and misorientation angle between the preferred crystalline orientation and the temper- ature gradient direction are studied to thoroughly understand the rapid solidification during LPBF. LPBF experi- ments are carried out to validate the modeling results in terms of melt pool dimensions and site-specific PDAS across the melt pool. The knowledge gained in this work will benefit the development of AM processing routine for fabrication of high-performance TiAl-based alloys towards extensive applications.

back
{"type":"article", "name":"x.zhang20213", "author":"X. Zhang and B. Mao and L. Mushongera and J. Kundin and Y. Liao", "title":"Laser powder bed fusion of titanium aluminides: an investigation on sitespecific microstructure evolution mechanism", "journal":"Materials & Design", "volume":"201", "OPTnumber":"", "OPTmonth":"3", "year":"2021", "OPTpages":"109501", "OPTnote":"", "OPTkey":"Laser powder bed fusion; titanium aluminides; phase-field modeling; cellular structure", "DOI":"10.1016/j.matdes.2021.109501"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N