Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Microstructure property classification of Nickel-based Superalloys using Deep Learning

U. Nwachukwu, A. Obaied, O. Horst, M. Ali, I. Steinbach, I. Roslyakova

Modelling and Simulation in Materials Science and Engineering, 30, 025009, (2022)

DOI: 10.1088/1361-651X/ac3217

Download: BibTEX

Nickel-based superalloys have a wide range of applications in high temperature and stress domains due to their unique mechanical properties. Under mechanical loading at high temperatures, rafting occurs which reduces the service life of these materials. Rafting is heavily affected by the loading conditions associated with plastic strain; therefore, understanding plastic strain evolution can help understand these material's service life. This research classifies Nickel-based superalloys with respect to creep strain with deep learning techniques, a technique that eliminates the need for manual feature extraction of complex microstructures. Phase-field simulation data that displayed similar results to experiments were used to build a model with pre-trained neural networks with several convolutional neural network architectures and hyper-parameters. The optimized hyper-parameters were transferred to scanning electron microscopy images of Nickel-based superalloys to build a new model. This fine-tuning process helped mitigate the effect of a small experimental dataset. The built models achieved a classification accuracy of 97.74% on phase-field data and 100% accuracy on experimental data after fine-tuning.

back
{"type":"article", "name":"u.nwachukwu20223", "author":"U. Nwachukwu and A. Obaied and O. Horst and M. Ali and I. Steinbach and I. Roslyakova", "title":"Microstructure property classification of Nickelbased Superalloys using Deep Learning", "journal":"Modelling and Simulation in Materials Science and Engineering", "volume":"30", "OPTnumber":"2", "OPTmonth":"3", "year":"2022", "OPTpages":"025009", "OPTnote":"", "OPTkey":"Computer vision; deep learning; microstructure evolution; ni-based superalloys; phase-field method;", "DOI":"10.1088/1361-651X/ac3217"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N