ICAMS / Interdisciplinary Centre for Advanced Materials Simulation


Tuning the magnetic phase diagram of Ni-Mn-Ga by Cr and Co substitution

M. Schröter, H. C. Herper, A. Grünebohm.

Journal of Physics D: Applied Physics, 55, 025002, (2022)

Ni-Mn-based Heusler alloys have a high technical potential related to a large change of magnetization at the structural phase transition. These alloys show a subtle dependence of magnetic properties and structural phase stability on composition and substitution by 3d elements and although they have been extensively investigated, there are still ambiguities in the published results and their interpretation. To shed light on the large spread of reported properties, we perform a comprehensive study by means of density functional theory calculations. We focus on Cr and Co co-substitution whose benefit has been predicted previously for the expensive Ni-Mn-In-based alloy and study the more abundant iso-electronic counterpart Ni-Mn-Ga. We observe that substituting Ni partially by Co and/or Cr enhances the magnetization of the Heusler alloy and at the same time reduces the structural transition temperature. Thereby, Cr turns out to be more efficient to stabilize the ferromagnetic alignment of the Mn spins by strong antiferromagnetic interactions between Mn and Cr atoms. In a second step, we study Cr on the other sublattices and observe that an increase in the structural transition temperature is possible, but depends critically on the short-range order of Mn and Cr atoms. Based on our results, we are able to estimate composition dependent magnetic phase diagrams. In particular, we demonstrate that neither the atomic configuration with the lowest energy nor the results based on the coherent potential approximation are representative for materials with a homogeneous distribution of atoms and we also predict a simple method for fast screening of different concentrations which can be viewed as a blueprint for the study of high entropy alloys. Our results help to explain the large variation of experimentally found materials properties.

Cite as: https://doi.org/10.1088/1361-6463/ac2a66
DOI: 10.1088/1361-6463/ac2a66
Download BibTEX

« back