Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

How coherent and semi-coherent interfaces govern dislocation nucleation in lamellar TiAl alloys

A. Chauniyal, R. Janisch

Advanced Engineering Materials, 25, 2300121, (2023)

DOI: 10.1002/adem.202300121

Download: BibTEX

γ/γ interfaces drive plastic deformation in lamellar TiAl alloys. Due to the ordering and resulting tetragonal nature of γ phase, γ/γ twin interfaces exist as different variants, some of which exhibit coherency stresses or semicoherent interface structures. While geometric parameters, such as the lamella spacing and orientation, are explored extensively in experiments, the isolation of individual influence of different interfaces in a nanolamellar microstructure remains a challenge. Herein, the range of γ/γ interface states is modeled using bilayers of the coherent γ/γTrueTwin, and the coherent or semicoherent γ/γPseudoTwin, and their deformation behavior is compared. It is shown that residual coherency stresses arise due to misfit accommodation in coherent γ/γPT specimens, which causes early preferential nucleation in one γ layer. Similarly, semicoherent specimens show preferential nucleation from misfit dislocations at the interface, which obeys Schmid’s rule. In contrast, coherent γ/γTT specimens show no preferential nucleation and therefore exhibit higher strength. Thus, it is demonstrated that the presence of rotational γ/γ interfaces with misfit is responsible for localized and early plasticity, that lowers the strength of a lamellar microstructure. The interface type, which considers the coherency state, is used as a criterion for alloy microstructure design in the future.

back
{"type":"article", "name":"a.chauniyal20234", "author":"A. Chauniyal and R. Janisch", "title":"How coherent and semicoherent interfaces govern dislocation nucleation in lamellar TiAl alloys", "journal":"Advanced Engineering Materials", "volume":"25", "OPTnumber":"15", "OPTmonth":"4", "year":"2023", "OPTpages":"2300121", "OPTnote":"", "OPTkey":"intermetallics; molecular statics simulations; nanostructured materials; dislocation analysis;", "DOI":"10.1002/adem.202300121"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N