Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Influence of vibrational entropy on structural stability of Nb-Si and Mo-Si systems at elevated temperatures

Y. Chen, T. Hammerschmidt, D. G. Pettifor, J.-X. Shang, Y. Zhang

Acta Materialia, 57, 2657-2664 , (2009)

DOI: 10.1016/j.actamat.2009.02.014

Download: BibTEX

The heats of formation of stable and metastable phases of the Nb–Si and Mo–Si systems were studied using density functional theory (DFT). The high-temperature behavior of the competing phases was studied by performing additional phonon calculations. Our theoretical results rationalize the major differences observed in the behavior of the Nb–Si and Mo–Si systems: Nb3Si is only stable at temperatures above 2043K, whereas Mo3Si is always stable; Nb5Si3 and MoSi2 undergo phase changes at elevated temperatures, in contrast to Mo5Si3 and NbSi2. These differences are qualitatively explained by including the vibrational entropy to the free energies within the harmonic approximation. In particular, the softer shear moduli of the Nb5Si3 and MoSi2 β phases cause their stabilities over the α phases at elevated temperature.

back
{"type":"article", "name":"y.chen20095", "author":"Y. Chen and T. Hammerschmidt and D. G. Pettifor and J.-X. Shang and Y. Zhang", "title":"Influence of vibrational entropy on structural stability of NbSi and MoSi systems at elevated temperatures", "journal":"Acta Materialia", "volume":"57", "OPTnumber":"9", "OPTmonth":"5", "year":"2009", "OPTpages":" 2657-2664 ", "OPTnote":"", "OPTkey":" Transition metal silicides; Ab initio electron theory; Phase transformations; Elastic behavior", "DOI":"10.1016/j.actamat.2009.02.014"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N