Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Grain growth simulations including particle pinning using the multiphase-field concept

M. Apel, B. Böttger, J. Rudnizki, P. Schaffnit, I. Steinbach

ISIJ International, 49, 1024-1029, (2009)

DOI: 10.2355/isijinternational.49.1024

Download: BibTEX

In this paper, the effect of particle pinning on grain boundary motion is investigated by phase-field modeling. In general, the kinetics of grain growth in multicrystalline materials is determined by the interplay of curvature driven grain boundary motion and the balance of interfacial tension at the vertices of a grain boundary network. A comprehensive way to treat both effects in one model is given by the phase-field approach. The specific feature of the multiphase-field model used for this investigation is its ability to treat each grain or phase boundary with its individual characteristics, together with a thermodynamic coupling which allows a sound treatment of phase transformation, e.g. the formation of precipitates of a second phase. The pinning effect itself is simulated on the nanometer scale resolving the interaction of individual inert or reactive precipitates with a curved grain boundary. From these simulations an effective pinning force is deduced, and a model for a driving force dependent grain boundary mobility is formulated accounting for the pinning effect in the grain growth simulation on the mesoscopic scale. These simulations demonstrate how particle pinning leads to much slower growth kinetics and a different grain morphology with higher boundary curvatures in the stationary state. Finally, an increase of the pinning force due to a changing particle density, e.g. during heat treatment, is shown to result in a transition between normal and abnormal grain growth before grain coarsening is inhibited completely.

back
{"type":"proceedings", "name":"m.apel20092", "author":"M. Apel and B. Böttger and J. Rudnizki and P. Schaffnit and I. Steinbach", "title":"Grain growth simulations including particle pinning using the multiphasefield concept", "journal":"ISIJ International", "volume":"49", "OPTnumber":"7", "OPTmonth":"2", "year":"2009", "OPTpages":"1024-1029", "OPTnote":"", "OPTkey":"phase-field; particle pinning; abnormal grain growth; inert particles; NbC particles ", "DOI":"10.2355/isijinternational.49.1024"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N