Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research - the Quasicontinuum method

B. Eidel

International Journal of Materials Research, 100, 1503-1512, (2009)

DOI: 10.3139/146.110208

Download: BibTEX

In this article we present a comparative analysis of different versions of the quasicontinuum method, which aim at a seamless transition from the atomistic to the continuum description of crystalline solids at zero temperature. All versions of this popular and powerful method exhibit the same building blocks, namely (i) a coarse-graining of fully atomistic resolution via kinematic constraints, (ii) an approximation of the energy/forces in coarse-grained regions via numerical quadrature and (iii) adaptive mesh refinement. The quasicontinuum versions are assessed in an example where a Lomer dislocation dipole is subject to shear deformation. In a second example, the fully nonlocal quasicontinuum method is used to simulate nanoindentation into an fcc single crystal. Compared with lattice statics good agreement is achieved with respect to significant details of the material behaviour for a small fraction of the computational costs.

back
{"type":"article", "name":"b.eidel200911", "author":"B. Eidel", "title":"Coupling atomistic accuracy with continuum effectivity for predictive simulations in materials research the Quasicontinuum method", "journal":"International Journal of Materials Research", "volume":"100", "OPTnumber":"", "OPTmonth":"11", "year":"2009", "OPTpages":"1503-1512", "OPTnote":"", "OPTkey":"multiscale modelling; quasicontinuum; nanoindentation; dislocation microstructure; surface effects", "DOI":"10.3139/146.110208"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N