Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

CALPHAD and phase field modeling: A successful liaison

I. Steinbach, B. Böttger, J. Eiken, N. Warnken, S. Fries

Journal of Phase Equilibria and Diffusion, 28, 101-106, (2007)

DOI: 10.1007/s11669-006-9009-2

Download: BibTEX

The connection between CALPHAD models and Phase-Field models is discussed against the background of minimization of the total Gibbs energy of a system. Both methods are based on separation of a multiphase system into individual contributions of the bulk phases, which are described by appropriate models in composition, temperature, and pressure. While the CALPHAD method uses a global minimization of the total Gibbs energy, the Phase-Field method introduces local interactions, interfaces, and diffusion and allows for non-equilibrium situations. Thus, the Phase-Field method is much more general by its concept, however, it can profit a lot if realistic thermodynamic descriptions, as provided by the CALPHAD method, are incorporated. The present paper discusses details of a direct coupling between the Multiphase-Field method and the CALPHAD method. Examples are presented from solidification of technical Mg and Ni base alloys and some problems arising from common practice concerning thermodynamic descriptions in order-disorder systems.

back
{"type":"article", "name":"i.steinbach20071", "author":"I. Steinbach and B. Böttger and J. Eiken and N. Warnken and S. Fries", "title":"CALPHAD and phase field modeling: A successful liaison", "journal":"Journal of Phase Equilibria and Diffusion", "volume":"28", "OPTnumber":"", "OPTmonth":"1", "year":"2007", "OPTpages":"101-106", "OPTnote":"", "OPTkey":"multicomponent thermodynamic databases; binary-alloys; transformations; solidification; superalloys; diffusion", "DOI":"10.1007/s11669-006-9009-2"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N