Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Multiscale simulations on the grain growth process in nanostructured materials

R. Darvishi Kamachali, J. Hua, I. Steinbach, A. Hartmaier

International Journal of Materials Research, 11, 1332-1338, (2010)

DOI: 10.3139/146.110419

Download: BibTEX

In this work, multi-phase field and molecular dynamics simulations have been used to investigate nanoscale grain growth mechanisms. Based on experimental observations, the combination of grain boundary expansion and vacancy diffusion has been considered in the multi-phase field model. The atomistic mechanism of boundary movement and the free volume redistribution during the growth process have been investigated using molecular dynamics simulations. According to the multi-phase field results, linear grain growth in nanostructured materials at low temperature can be explained by vacancy diffusion in the stress field around the grain boundaries. Molecular dynamics simulations confirm the observation of linear grain growth for nanometer-sized grains. The activation energy of grain boundary motion in this regime has been determined to be of the order of one-tenth of the self-diffusion activation energy, which is consistent with experimental data. Based on the simulation results, the transition from linear to normal grain growth is discussed in detail and a criterion for this transition is proposed.

back
{"type":"article", "name":"r.darvishikamachali201011", "author":"R. Darvishi Kamachali and J. Hua and I. Steinbach and A. Hartmaier", "title":"Multiscale simulations on the grain growth process in nanostructured materials", "journal":"International Journal of Materials Research", "volume":"11", "OPTnumber":"", "OPTmonth":"11", "year":"2010", "OPTpages":"1332-1338", "OPTnote":"", "OPTkey":"multiscale simulations; grain growth; nanostructured materials", "DOI":"10.3139/146.110419"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N