Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Phase-field modelling of microstructure evolution in solids: Perspectives and challenges

I. Steinbach, O. Shchyglo

Current Opinion in Solid State and Materials Science, 15, 87-92, (2011)

DOI: 10.1016/j.cossms.2011.01.001

Download: BibTEX

Phase-field modelling is maturing to become a universal tool for modelling microstructure evolution in materials science. In solidification applications it has been proven to give quantitative predictions. In solid state, however, the mechanisms of phase transformation and microstructure evolution in are much more involved due to the existence of mechanical interactions, high interface anisotropies, large densities of defects, and retarded kinetics of diffusion and growth. The paper gives an overview of actual developments in phase-field modelling of solid-state microstructure evolution and highlights necessary directions of future development in order to meet the challenge of quantitative predictions.

back
{"type":"article", "name":"i.steinbach20116", "author":"I. Steinbach and O. Shchyglo", "title":"Phasefield modelling of microstructure evolution in solids: Perspectives and challenges", "journal":"Current Opinion in Solid State and Materials Science", "volume":"15", "OPTnumber":"3", "OPTmonth":"6", "year":"2011", "OPTpages":"87-92", "OPTnote":"", "OPTkey":"Phase-field; Solid-state transformation", "DOI":"10.1016/j.cossms.2011.01.001"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N