Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Role of spin quantization in determining the thermodynamic properties of magnetic transition metals

F. Körmann, A. Dick, T. Hickel, J. Neugebauer

Physical Review B, 83, 165114, (2011)

DOI: 10.1103/PhysRevB.83.165114

Download: BibTEX

We propose a combined ab initio-spin quantum Monte Carlo (QMC) approach to compute thermodynamic properties of magnetic materials by first principles. The key to the proposed approach is a mapping of the magnetic long-range system onto an effective, nearest-neighbor quantum Heisenberg model, for which the QMC approach provides a numerically exact solution. The performance of the proposed method is demonstrated for the transition metals Fe, Co, and Ni by computing magnetization shapes, specific heat capacities, and free energies. Spin-quantization effects are found to be critical, even close to T-C.

back
{"type":"article", "name":"f.körmann20114", "author":"F. Körmann and A. Dick and T. Hickel and J. Neugebauer", "title":"Role of spin quantization in determining the thermodynamic properties of magnetic transition metals", "journal":"Physical Review B", "volume":"83", "OPTnumber":"16", "OPTmonth":"4", "year":"2011", "OPTpages":"165114", "OPTnote":"", "OPTkey":"iron; systems", "DOI":"10.1103/PhysRevB.83.165114"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N