Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Tight-binding simulation of transition-metal alloys

E. McEniry, G. Madsen, J. Drain, R. Drautz

Journal of Physics: Condensed Matter, 23, 276004, (2011)

DOI: 10.1088/0953-8984/23/27/276004

Download: BibTEX

In order to perform atomistic simulations of steel, it is necessary to have a detailed understanding of the complex interatomic interactions in transition metals and their alloys. The tight-binding approximation provides a computationally efficient, yet accurate, method to investigate such interactions. In the present work, an orthogonal tight-binding model for Fe, Mn and Cr, with the explicit inclusion of magnetism, has been parameterized from ab initio density-functional calculations.

back
{"type":"article", "name":"e.mceniry20117", "author":"E. McEniry and G. Madsen and J. Drain and R. Drautz", "title":"Tightbinding simulation of transitionmetal alloys", "journal":"Journal of Physics: Condensed Matter", "volume":"23", "OPTnumber":"27", "OPTmonth":"7", "year":"2011", "OPTpages":"276004", "OPTnote":"", "OPTkey":"sigma-phase; bond; Fe", "DOI":"10.1088/0953-8984/23/27/276004"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N