Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Multi-axial thermo-mechanical fatigue of a near-gamma TiAl-alloy

S.P. Brookes, H.J. Kühn, B. Skotzki, H. Klingenhöffer, R. Sievert, J. Pfetzing, D. Peter, G. Eggeler

Advanced Materials Research, 59, 283-287, (2009)

DOI: 10.4028/www.scientific.net/AMR.59.283

Download: BibTEX

A material family to replace the current superalloys in aeronautical gas turbine engines is considered to be that of gamma Titanium Aluminide (gamma-TiAl) alloys. Structural components in aeronautical gas turbine engines typically experience large variations in temperatures and multiaxial states of stress under non-isothermal conditions. The uniaxial, torsional and bi-axial thermo-mechanical fatigue (TMF) behaviour of this gamma-TiAl alloy have been examined at 400 - 800 degrees C with strain amplitudes from 0.15% to 0.7%. The tests were conducted at both in-phase (IP) and out-of-phase (OP). The effects of TMF on the microstructure were also investigated. For the same equivalent mechanical strain amplitude uniaxial IP tests showed significantly longer lifetimes than pure torsional TMF tests. The non-proportional multiaxial OP test showed the lowest lifetimes at the same equivalent mechanical strain amplitude compared to the other types of tests.

back
{"type":"proceedings", "name":"s.p.brookes20091", "author":"S.P. Brookes and H.J. Kühn and B. Skotzki and H. Klingenhöffer and R. Sievert and J. Pfetzing and D. Peter and G. Eggeler", "title":"Multiaxial thermomechanical fatigue of a neargamma TiAlalloy", "journal":"Advanced Materials Research", "volume":"59", "OPTnumber":"", "OPTmonth":"1", "year":"2009", "OPTpages":"283-287", "OPTnote":"", "OPTkey":"gamma-titanium aluminide; thermo-mechanical fatigue; axial-torsional loading", "DOI":"10.4028/www.scientific.net/AMR.59.283"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N