Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Fracture toughness of layered structures: Embrittlement due to confinement of plasticity

N. C. Broedling, A. Hartmaier, H. Gao

Engineering Fracture Mechanics, 75, 3743-3754 , (2008)

DOI: 10.1016/j.engfracmech.2007.10.014

Download: BibTEX

The fracture toughness of a layered composite material is analyzed employing a combined two dimensional dislocation dynamics (DD)-cohesive zone (CZ) model. The fracture mechanism of an elastic-plastic (ductile) material sandwiched within purely elastic layers approaches ideally brittle behaviour with decreasing layer thickness. We investigate the influence of different constitutive parameters concerning dislocation plasticity as well as the effect of cohesive strength of the ductile material on the scaling of fracture toughness with layer thickness. For a constant layer thickness, the results of the numerical model are consistent with the expectation that fracture toughness decreases with increasing yield strength, but increases with the cohesive strength of the material. The scaling behaviour of the fracture toughness with layer thickness depends on these material parameters, but also on the dislocation microstructure in the vicinity of the crack tip. Strain localization due to easy dislocation generation right at the crack tip improves toughness in thin layers and leads to a jump-like increase of fracture toughness with layer thickness. However, the fracture toughness for films that are thick enough to exhibit bulk behaviour proves to be higher when the distribution of dislocations is more homogeneous, because in this case the crack grows in a stable fashion over some distance.

back
{"type":"article", "name":"n.c.broedling20081", "author":"N. C. Broedling and A. Hartmaier and H. Gao", "title":"Fracture toughness of layered structures: Embrittlement due to confinement of plasticity ", "journal":"Engineering Fracture Mechanics", "volume":"75", "OPTnumber":"12", "OPTmonth":"1", "year":"2008", "OPTpages":"3743-3754 ", "OPTnote":"", "OPTkey":"fracture; dislocation dynamics; simulation; layered structures", "DOI":"10.1016/j.engfracmech.2007.10.014"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N