Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Mechanisms of grain boundary softening and strain-rate sensitivity in deformation of ultrafine-grained metals at high temperatures

N. Ahmed, A. Hartmaier

Acta Materialia, 59, 4323-4334, (2011)

DOI: 10.1016/j.actamat.2011.03.056

Download: BibTEX

Two-dimensional dislocation dynamics and diffusion kinetics simulations are employed to study the different mechanisms of plastic deformation of ultrafine-grained (UFG) metals at different temperatures. Besides conventional plastic deformation by dislocation glide within the grains, we also consider grain boundary (GB)-mediated deformation and recovery mechanisms based on the absorption of dislocations into GBs. The material is modeled as an elastic continuum that contains a defect microstructure consisting of a pre-existing dislocation population, dislocation sources and GBs. The mechanical response of the material to an external load is calculated with this model over a wide range of temperatures. We find that at low homologous temperatures, the model material behaves in agreement with the classical Hall-Petch law. At high homologous temperatures, however, a pronounced GB softening and, moreover, a high strain-rate sensitivity of the model material is found. Qualitatively, these numerical results agree well with experimental results known from the literature. Thus, we conclude that dynamic recovery processes at GBs and GB diffusion are the rate-limiting processes during plastic deformation of UFG metals.

back
{"type":"article", "name":"n.ahmed20116", "author":"N. Ahmed and A. Hartmaier", "title":"Mechanisms of grain boundary softening and strainrate sensitivity in deformation of ultrafinegrained metals at high temperatures", "journal":"Acta Materialia", "volume":"59", "OPTnumber":"11", "OPTmonth":"6", "year":"2011", "OPTpages":"4323-4334", "OPTnote":"", "OPTkey":"dislocation dynamics; polycrystals; plasticity; diffusion; modeling", "DOI":"10.1016/j.actamat.2011.03.056"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N