Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
Home » Research » Publications

Just another WordPress site - Ruhr-Universität Bochum

Ab initio-based prediction of phase diagrams: application to magnetic shape memory alloys

T. Hickel, M. Uijttewaal, A. Al-Zubi, B. Dutta, B. Grabowski, J. Neugebauer

Advanced Engineering Materials, 14, 547-561, (2012)

DOI: 10.1002/adem.201200092

Download: BibTEX

An ultimate goal of material scientists is the prediction of the thermodynamics of tailored materials solely based on first principles methods. The present work reviews recent methodological developments and advancements providing thereby an up-to-date basis for such an approach. Key ideas and the performance of these methods are discussed with respect to the Heusler alloy Ni–Mn–Ga – a prototype magnetic shape-memory alloy of great technological interest for various applications. Ni–Mn–Ga shows an interesting and complex sequence of phase transitions, rendering it a significant theoretical challenge for any first principles approach. The primary goal of this investigation is to determine the composition dependence of the martensitic transition temperature in these alloys. Quasiharmonic phonons and the magnetic exchange interactions as well as the delicate interplay of vibrational and magnetic excitations are taken into account employing density functional theory.

back
{"type":"article", "name":"t.hickel20128", "author":"T. Hickel and M. Uijttewaal and A. Al-Zubi and B. Dutta and B. Grabowski and J. Neugebauer", "title":"Ab initiobased prediction of phase diagrams: application to magnetic shape memory alloys", "journal":"Advanced Engineering Materials", "volume":"14", "OPTnumber":"8", "OPTmonth":"8", "year":"2012", "OPTpages":"547-561", "OPTnote":"", "OPTkey":"Ni-Mn-Ga; Ni2MnGa single-crystals; augmented-wave method; field-induced strain; heusler alloys; martensitic structures; structural-properties; compound Ni2MnGa; entropy change; beta-phase", "DOI":"10.1002/adem.201200092"}
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N