Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

workshop

Mechanical properties of interfaces in TiAl α2/γ lamellar microstructures: atomistic study

Mansour Kanani, Ruhr-Universität Bochum, Bochum, Germany

Rebecca Janisch, Ruhr-Universität Bochum, Bochum, Germany

Alexander Hartmaier, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 17.03.2014
  • Time:
  • Place: Winter School International Seminar on Process Chain Simulation and Related Topics, Institute of Technology, Karlsruhe, Germany

Abstract

To improve the ductility and fracture strength of TiAl alloys, one of the crucial tasks is the correct understanding of the deformation mechanisms on different scales. Particularly, in a two-phase (γ and α2) lamellar structure which consists of various interfaces and lamellae on the nano- to micrometre-scale, the importance of having such a multiscale modeling is obvious. Indeed, for a better interpretation and understanding of experimental observations based on the knowledge of nano-scale deformation mechanisms, such as lamellar boundary sliding as well as dislocation dissociation, an atomistic modeling is required. Quantitative values for stacking fault energies and other key quantities for various interfaces in the lamellar microstructure can be obtained through ab-initio density functional theory (DFT) calculations. Basic processes and deformation mechanisms in a lamellar microstructure can be modeled via molecular dynamics (MD) simulations, ideally benchmarked to DFT results. In this project, we have carried out atomistic studies by applying DFT and MD approaches on a two phase α2/γ lamellar microstructure. On the DFT level special emphasis has been put on both tensile and shear properties of different lamellar boundaries and in MD simulations the dynamic response of the interfaces to loading is tracked.

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N