Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

conference

Structure-property correlations for grain boundaries in bcc-iron

Jingliang Wang, Ruhr-Universität Bochum, Bochum, Germany

Georg Madsen, Ruhr-Universität Bochum, Bochum, Germany

Ralf Drautz, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 29.05.2014
  • Time: 2:30 p.m.
  • Place: E-MRS Spring Meeting, Lille, France

Abstract

The computational discovery of new bulk materials is now becoming a quite widespread approach. However, the properties of realistic materials are often dominated by the defects and it is necessary to understand their atomic structure and how they impact the properties of materials. One example is the mechanical properties of advanced steels, which can be greatly influenced by grain boundaries (GBs) and segregation of light elements to them. To obtain a better understanding of the structure-property correlations for grain boundaries in bcc-iron, grain boundary energies of all the <100>, <110> and <111> grain boundaries with ∑<15 were calculated with DFT. We present a high-throughput strategy for modifying the rigorous coincidence site lattice GBs in order to find the most stable GB structure. It is found that for certain GBs several starting configurations lead to the same minimum energy structure. The correlations between GB energy and local atomic structure are presented.

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N