Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

conference

Phase-field model with Gibbs energy formulation using the sublattice formalism

Matthias Stratmann, Ruhr-Universität Bochum, Bochum, Germany

Lijun Zhang, Central South University, Changsha, China

Oleg Shchyglo, Ruhr-Universität Bochum, Bochum, Germany

Ingo Steinbach, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 24.09.2014
  • Time: 11:45 AM
  • Place: Materials Science and Engineering MSE, Darmstadt, Germany

Abstract

Based on a recently developed phase-field model with finite interface dissipation, an approach to directly incorporate the CALPHAD sublattice model in phase-field formalism is developed [1]. In binary alloys, the sublattice models can be classified into two types. For “Type I” sublattice model, a direct one-to-one relation between the element site fraction and the phase concentration was found to exist. As for “Type II” sublattice model, the one-to-one relation can be established via an internal relaxation between different sublattices. With the present coupling techniques, the free energy and potential information from the CALPHAD database can be directly utilized in the phase-field simulation.

The coupling technique using CALPHAD software was successfully applied to study phase transformations in Fe-alloys.

[1] L. Zhang, M. Stratmann, Y. Du, B. Sundman and I. Steinbach, “Coupling of the phase-field model with finite interface dissipation and the sublattice model in CALPHAD formalism”, submitted, 2014

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N