Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

conference

CPFEM modeling of porosity reduction in an as-cast Ni-base single crystal superalloy under HIP

Anxin Ma, Ruhr-Universität Bochum, Bochum, Germany

Inmaculada Lopez-Galilea, Ruhr-Universität Bochum, Bochum, Germany

Werner Theisen, Ruhr-Universität Bochum, Bochum, Germany

Alexander Hartmaier, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 25.03.2015
  • Time:
  • Place: Gordon Research Conference Physical Metallurgy 2015, Maine, USA

Abstract

The excellent performance of Ni-base single crystal superalloys at high temperature comes from the precipitate strengthening by coherent cuboidal precipitates homogeneously distributed in the matrix and the solid solution strengthening by adding a high concentration of refractory elements. However, a stronger dendritic segregation during solidification and pores accumulation in the interdendritic region during an extensive homogenization tend to occur, which deteriorates the mechanical properties. In order to heal these micropores, hot isostatic pressing (HIP) as an advanced thermal treatment is utilized, which combines plastic deformation, creep and diffusion bonding to homogenize the alloy composition through an appropriate pressing and high temperature. As the costs of single crystal superalloys and HIP are high, it is necessary to understand the porosity reduction in this process by modeling to optimize the HIP parameters and reduce the expense. Our CPFEM simulations show that: Pore shape strongly affects the pore shrinkage in rate and local deformation; as pore schrinkes, the hetergenity of stress decreases, while the heterogenity of deformation increases.

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N