Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

conference

Construction of structure and chemistry descriptors for machine-learning material properties

Jan Jenke, Ruhr-Universität Bochum, Bochum, Germany

Aparna Subramanyam, Ruhr-Universität Bochum, Bochum, Germany

Yury Lysogorskiy, Ruhr-Universität Bochum, Bochum, Germany

Ning Wang, Ruhr-Universität Bochum, Bochum, Germany

Thomas Hammerschmidt, Ruhr-Universität Bochum, Bochum, Germany

Ralf Drautz, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 25.06.2018
  • Time:
  • Place: 10 Years ICAMS - International Symposium, Ruhr-Universität Bochum, Germany

Abstract

Machine learning (ML) methods can be used to bypass computationally expensive simulations in materials science by learning from previous results. This allows to speed-up screening procedures and is therefore a highly promising approach for the discovery of novel materials. However, for an effective application, descriptors have to be constructed which are informed by domain knowledge of the material and are also in a suitable input format for the ML algorithm. The present work summarizes different approaches of the construction of descriptors that are based on the local atomic structure, chemistry and magnetic configuration of the material of interest. Different ML methods are then selected and applied on the generated feature space to predict different physical quantities, including the structural stability of transparent conductors, intermetallic phases and magnetically disordered iron.

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N