Logo RUB
  • Institute
    • ICAMS
      • Mission
      • Structure
      • Members
      • Fellows
    • Departments & Research Groups
      • Atomistic Modelling and Simulation
      • Scale-Bridging Thermodynamic and Kinetic Simulation
      • Micromechanical and Macroscopic Modelling
      • Artificial Intelligence for Integrated Material Science
      • Computational Design of Functional Interfaces
      • Scale-Bridging Simulation of Functional Composites
      • Materials Informatics and Data Science
      • High-Performance Computing in Materials Science
    • Central Services
      • Coordination Office
      • IT
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information
 
ICAMS
ICAMS
MENÜ
  • RUB-STARTSEITE
  • Institute
    • ICAMS
    • Departments & Research Groups
    • Central Services
  • Research
    • Overview
    • Publications
    • Software and Data
    • Collaborative research
    • Research networks
    • Young enterprises
  • Teaching
    • Overview
    • Materialwissenschaft B.Sc.
    • Materials Science and Simulation M.Sc.
    • ICAMS Graduate School
    • Student Projects
  • News & Events
    • Overview
    • News
    • Seminars and Workshops
    • Conferences
  • Services
    • Overview
    • Contact
    • Open positions
    • Travel information

Just another WordPress site - Ruhr-Universität Bochum

conference

Size independent description of the strain effects on the segregation of carbon and hydrogen in iron

Abril Azócar Guzmán, Ruhr-Universität Bochum, Bochum, Germany

Rebecca Janisch, Ruhr-Universität Bochum, Bochum, Germany

Alexander Hartmaier, Ruhr-Universität Bochum, Bochum, Germany

Time & Place
  • Date: 02.04.2019
  • Time: 15:15
  • Place: DPG Spring Meeting, Regensburg, Germany

Abstract

Structural materials such as steels are frequently processed under stress and strain conditions; in such systems, C and H have been shown to strongly affect the mechanical properties of Fe. Therefore, it is of interest to understand the coupling between segregation phenomena and mechanical response. In this work, we study the cohesion behaviour of a Σ5(310)[001] symmetrical tilt grain boundary (STGB) in body centred cubic (bcc) Fe with C as an interstitial alloying element and H as an impurity. Using first-principles calculations, the solution and segregation energies are obtained for varying mechanical load and GB coverage of the segregating atoms, either for fixed concentration or fixed chemical potential. Thus, the maximum concentration of C and H is calculated. We discuss that the concept of strain, or displacement, in ab initio tensile tests that include structural relaxations is ill-defined due to the release of elastic energy, which causes the calculated total energies to depend on the system size. The proposed procedure is to obtain the solution energies as a function of the stress instead of the displacement (or strain), assuming that the stress distributes equally among crystallographic planes in the supercell.

back
Logo RUB
  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Ruhr-Universität Bochum
Universitätsstraße 150
44801 Bochum

  • Open positions
  • Travel information
  • Imprint
  • Privacy Policy
  • Sitemap
Seitenanfang Kontrast N